论文标题

重新组合自旋动力学的蒙特卡洛波函数方法

Monte-Carlo wavefunction approach for the spin dynamics of recombining radicals

论文作者

Keens, Robert H., Kattnig, Daniel R.

论文摘要

我们适应了蒙特 - 卡洛波函数(MCWF)方法,以治疗受自旋选择性重组反应的自由基对的开放系统自旋动力学。对于这些系统,非Lindbladian主方程是广泛使用的,这是通过非痕量保护的Haberkorn超级驱动器与反应依赖性交换和Singlet-Triplet脱离术语相结合的重组。我们表明,通过引入第二种类型的量子跳跃,可以简单地通过适当终止传播来解释反应,从而在MCWF方法中可以容纳这种类型的主方程。通过这种方式,我们能够评估有关时间依赖性的自由基对生存概率的近似解决方案,该系统迄今为止被认为是用主方程方法无法处理的系统。我们通过对激进对反应的计算来阐明建议的方法,这些反应被认为与鸟类和相关现象有关。

We adapt the Monte-Carlo wavefunction (MCWF) approach to treat the open-system spin dynamics of radical pairs subject to spin-selective recombination reactions. For these systems, non-Lindbladian master equations are widely employed, which account for recombination via the non trace-preserving Haberkorn superoperator in combination with reaction-dependent exchange and singlet-triplet dephasing terms. We show that this type of master equation can be accommodated in the MCWF approach, by introducing a second type of quantum jump that accounts for the reaction simply by suitably terminating the propagation. In this way, we are able to evaluate approximate solutions to the time-dependent radical pair survival probability for systems that have been considered untreatable with the master equation approach until now. We explicate the suggested approach with calculations for radical pair reactions that have been suggested to be relevant for the quantum compass of birds and related phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源