论文标题

与$ j \ bar {t} $变形的全息双重双重的分析可集成性

Analytic integrability for holographic duals with $ J\bar{T} $ deformations

论文作者

Roychowdhury, Dibakar

论文摘要

我们探测带有各种字符串孤子的BTZ $ \ times S^3 $几何形状,并使用Kovacic的算法探索了相关相位空间配置的经典集成性标准。我们考虑将父sigma模型一致地截断到一个维度上,并获得相应的正常变分方程(NVE)。在整个目标空间几何形状的子空间上降低了Sigma模型,已经考虑了两个具体的示例。在这两个示例中,都发现NVE具有Liouvillian的解决方案形式,可确保相关的相空间动力学的经典集成性。我们解决了二元性的有限温度对应物的类似问题,在那里我们分析了弦孔探测扭曲的BTZ黑色弦线几何形状的经典相位空间。我们的分析揭示了正常变分方程与Kovacic标准设定的规则之间的明确兼容性。这确保了父sigma模型在二元性猜想的有限温度扩展中的经典集成性。

We probe warped BTZ $ \times S^3 $ geometry with various string solitons and explore the classical integrability criteria of the associated phase space configurations using Kovacic's algorithm. We consider consistent truncation of the parent sigma model into one dimension and obtain the corresponding normal variational equations (NVE). Two specific examples have been considered where the sigma model is reduced over the subspace of the full target space geometry. In both examples, NVEs are found to possess the Liouvillian form of solutions which ensures the classical integrability of the associated phase space dynamics. We address similar issues for the finite temperature counterpart of the duality, where we analyze the classical phase space of the string soliton probing warped BTZ black string geometry. Our analysis reveals clear compatibility between normal variational equations and the rules set by the Kovacic's criteria. This ensures the classical integrability of the parent sigma model for the finite-temperature extension of the duality conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源