论文标题

线性系统中内存解的时间复杂性

Time complexity of in-memory solution of linear systems

论文作者

Sun, Zhong, Pedretti, Giacomo, Mannocci, Piergiulio, Ambrosi, Elia, Bricalli, Alessandro, Ielmini, Daniele

论文摘要

具有跨点电阻内存阵列的内存计算已被证明可以加速以数据为中心的计算,例如深度神经网络的训练和推理,这要归功于电路中物理规则的高平行性。通过将交叉点阵列与负反馈放大器连接,可以在一步中求解线性代数问题,例如线性系统和矩阵特征向量。基于反馈电路的理论,我们研究了内存阵列中线性系统解的动力学,表明溶液的时间复杂性不受任何直接依赖问题大小n的直接依赖,而是由系数矩阵相关矩阵的最小特征值控制。我们表明,当线性系统通过协方差矩阵建模时,时间复杂度为O(logn)或O(1)。在稀疏的正定线性系统的情况下,时间复杂性仅由系数矩阵的最小特征值确定。这些结果证明了在广泛应用中求解线性系统的电路的高速,从而支持内存计算,作为未来大数据和机器学习加速器的强大候选者。

In-memory computing with crosspoint resistive memory arrays has been shown to accelerate data-centric computations such as the training and inference of deep neural networks, thanks to the high parallelism endowed by physical rules in the electrical circuits. By connecting crosspoint arrays with negative feedback amplifiers, it is possible to solve linear algebraic problems such as linear systems and matrix eigenvectors in just one step. Based on the theory of feedback circuits, we study the dynamics of the solution of linear systems within a memory array, showing that the time complexity of the solution is free of any direct dependence on the problem size N, rather it is governed by the minimal eigenvalue of an associated matrix of the coefficient matrix. We show that, when the linear system is modeled by a covariance matrix, the time complexity is O(logN) or O(1). In the case of sparse positive-definite linear systems, the time complexity is solely determined by the minimal eigenvalue of the coefficient matrix. These results demonstrate the high speed of the circuit for solving linear systems in a wide range of applications, thus supporting in-memory computing as a strong candidate for future big data and machine learning accelerators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源