论文标题

超薄液体膜的惯性破裂

Inertial rupture of ultrathin liquid films

论文作者

Moreno-Boza, D., Martínez-Calvo, A., Sevilla, A.

论文摘要

Navier-Stokes方程的理论和数值模拟用于揭示沉积在固体基材上的牛顿液体超薄液体的惯性驱动的脱水动力学。提供了有限的Ohnersorge数字的电影变薄制度的分类,从而统一了以前的发现。我们揭示,对于大于一个小于一个的大霍尼斯的数字,接近分子尺度的破裂奇异性的最终方法是由液体惯性和范德华的平衡控制的,导致$ h _ {\ text {min}}}} \ propto t trickto t text^$ h.厚度和$τ$是破裂之前剩下的时间。该流程表现出一个三个区域的结构,其中包括由壁和自由表面的一对边界层界定的无关核心。提供了无旋转核的潜在流动描述,该描述渐近地与粘性层匹配,从而使我们能够对惯性驱动的膜破裂进行完整的无参数渐近描述。

Theory and numerical simulations of the Navier-Stokes equations are used to unravel the inertia-driven dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the film thinning regimes at finite Ohnersorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the final approach to the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces leading to a self-similar asymptotic regime with $h_{\text{min}} \propto τ^{2/5}$, where $h_{\text{min}}$ is the minimum film thickness and $τ$ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is asymptotically matched with the viscous layers, allowing us to present a complete parameter-free asymptotic description of inertia-driven film rupture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源