论文标题
$ f_k /f_π$来自Möbius域壁壁费的fermions在梯度流hisq emq emq emq emq emq sembles上
$F_K / F_π$ from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles
论文作者
论文摘要
我们使用Möbiusdomain-wall-fermions在梯度流$ n_f = 2+1+1+1 $高度增强的交错夸克(HISQ)合奏中计算出$ f_k/f_π$的晶格量子染色器计算的结果。计算是用五个值的pion质量值执行的,范围从$ 130 \ lyssimm_π\ lyssim 400 $ meV,四个晶格间距$ a \ sim 0.15、0.12、0.09 $和0.06 $和$ 0.06 $ fm和晶格体积的多个值。使用相关的混合动作有效的现场理论表达式以及离散化的连续性手学扰动理论形式,使用各种不同的外推函数以及各种不同的外推函数进行了插值/外推,连续体和无限体积限制。我们发现$ a \ sim0.06 $ fm集合是有用的,但没有必要实现$ f_k/f_π$的次级确定。我们还包括一个强大的isospin破坏校正的估计值,并得出$ f_ {k^\ pm}/f_ {π^\ pm} = 1.1942(45)$的最终结果,其中包括所有统计和系统的不确定性来源。这与风味晶格平均平均值一致,这为我们的晶格动作提供了重要的基准。将我们的结果与乳头的实验测量结果结合在一起,而kaon Leptonic衰减会导致$ | v_ {us} |/| v_ {ud} |的确定。 = 0.2311(10)$。
We report the results of a lattice quantum chromodynamics calculation of $F_K/F_π$ using Möbius domain-wall fermions computed on gradient-flowed $N_f=2+1+1$ highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from $130 \lesssim m_π\lesssim 400$ MeV, four lattice spacings of $a\sim 0.15, 0.12, 0.09$ and $0.06$ fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the $a\sim0.06$ fm ensemble is helpful, but not necessary to achieve a subpercent determination of $F_K/F_π$. We also include an estimate of the strong isospin breaking corrections and arrive at a final result of $F_{K^\pm}/F_{π^\pm} = 1.1942(45)$ with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of $|V_{us}|/|V_{ud}| = 0.2311(10)$.