论文标题
视觉社会疏远问题
The Visual Social Distancing Problem
论文作者
论文摘要
遏制最近病毒爆发的主要和最有效的措施之一是维持所谓的社会距离(SD)。为了遵守这一限制,工作场所,公共机构,运输和学校可能会在人之间的最小人际距离上采取限制。鉴于这种实际情况,至关重要的是要大量衡量我们生活中这种物理约束的依从性,以找出这种距离限制可能中断的原因,并理解这是否意味着在场景上下文的情况下是否可能存在威胁。所有这些,符合隐私政策并使测量可以接受。为此,我们介绍了视觉社会距离(VSD)问题,该问题定义为自动估计与图像的个人间距离以及相关人员聚集的表征。对于人们是否遵守SD限制,VSD对于非侵入性分析至关重要,并在违反此限制时提供有关特定领域安全水平的统计信息。然后,我们讨论VSD与以前的社会信号处理中的文献之间的关系,并指出可以使用哪些现有的计算机视觉方法来管理此类问题。我们将未来的挑战与VSD系统的有效性,道德含义和未来的应用方案有关。
One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.