论文标题
精确处理X射线照明的积聚磁盘中的组合化
Accurate Treatment of Comptonization in X-ray Illuminated Accretion Disks
论文作者
论文摘要
大部分积聚的黑洞和中子星系提供了清晰的证据,证明了X射线在光学上厚的吸积盘中的重新处理。 X射线反射的主要标志包括来自Iron($ \ sim 6.4-6.9 $ KEV)的荧光K壳发射线,吸收铁K-Edge($ \ sim 7-9 $ keV)和一个被称为Compton Hump($ \ sim 20-40 $ kev)的广泛的无功能组件。该康普顿驼峰是由于相对较冷的电子($ e \ gtrsim 10 $ keV)在积聚磁盘中散射($ e \ gtrsim 10 $ keV),并与来自Iron的光电吸收相结合。在大多数当前电离X射线反射模型中,该过程的处理是使用近似高斯重新分布核进行的。这种方法的运作良好,最高可达$ \ sim100 $ kev,但是在较高的能量和相对论温度($ t_e \ sim10^9 $ k)下,它在很大程度上变得不准确。我们使用代码Xillver的修改版本对X射线反射进行了新的计算,其中包括用于在磁盘大气中反射的未极化光子的康普顿散射的精确解决方案。该解决方案考虑了量子电动力学和相对论效应,允许正确处理高光子能量和电子温度。我们显示了使用此模型计算的新反射光谱,并讨论了康普顿驼峰正确形状的改进,与先前计算的差异以及这些新模型在观察数据解释中的预期影响。
A large fraction of accreting black hole and neutron stars systems present clear evidence of the reprocessing of X-rays in the atmosphere of an optically-thick accretion disk. The main hallmarks of X-ray reflection include fluorescent K-shell emission lines from iron ($\sim 6.4-6.9$ keV), the absorption iron K-edge ($\sim 7-9$ keV), and a broad featureless component known as the Compton hump ($\sim 20-40$ keV). This Compton hump is produced as the result of the scattering of high-energy photons ($E \gtrsim 10$ keV) of the relatively colder electrons ($T_e \sim 10^5-10^7$ K) in the accretion disk, in combination with photoelectric absorption from iron. The treatment of this process in most current models of ionized X-ray reflection has been done using an approximated Gaussian redistribution kernel. This approach works sufficiently well up to $\sim100$ keV, but it becomes largely inaccurate at higher energies and at relativistic temperatures ($T_e\sim10^9$ K). We present new calculations of X-ray reflection using a modified version of our code XILLVER, including an accurate solution for Compton scattering of the reflected unpolarized photons in the disk atmosphere. This solution takes into account quantum electrodynamic and relativistic effects allowing the correct treatment of high photon energies and electron temperatures. We show new reflection spectra computed with this model, and discuss the improvements achieved in the reproducing the correct shape of the Compton hump, the discrepancies with previous calculations, and the expected impact of these new models in the interpretation of observational data.