论文标题

Hyers - 量子方程的紫外线稳定性

Hyers--Ulam stability for quantum equations

论文作者

Anderson, Douglas R., Onitsuka, Masakazu

论文摘要

我们介绍并研究了一阶的Cayley量子($ Q $ - 差异)方程的Hyers-ulam稳定性(HUS),其中允许恒定系数在复数上范围。特别是,如果该系数为非零,则量子方程为HYERS - 用于Cayley参数的某些值的ULAM稳定性,并且我们仅根据系数建立了最佳(最小)HUS常数,而仅$ Q $和Cayley参数。如果Cayley参数等于一半,则没有HYERS - 在复杂平面中任何系数值的紫外线稳定性。

We introduce and study the Hyers--Ulam stability (HUS) of a Cayley quantum ($q$-difference) equation of first order, where the constant coefficient is allowed to range over the complex numbers. In particular, if this coefficient is non-zero, then the quantum equation has Hyers--Ulam stability for certain values of the Cayley parameter, and we establish the best (minimal) HUS constant in terms of the coefficient only, independent of $q$ and the Cayley parameter. If the Cayley parameter equals one half, then there is no Hyers--Ulam stability for any coefficient value in the complex plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源