论文标题
动态变焦模拟:一种用于模拟Lightcones的快速自适应算法
Dynamic Zoom Simulations: a fast, adaptive algorithm for simulating lightcones
论文作者
论文摘要
新一代大规模银河调查的出现正在推动宇宙学数字模拟在未知的领域中。由于其计算和数据存储需求,高分辨率和非常大容量的同时要求构成了严重的技术挑战。在本文中,我们提出了一种新颖的方法,称为动态变焦模拟(或DZS),以解决这些问题。我们的方法是根据N体数值模拟产生的LightCone输出量身定制的,与标准共同的快照相比,该方法可以进行更有效的存储和后处理,并更直接地模仿调查数据的格式。在DZ中,模拟的分辨率在灯酮表面外动态减少,从而减少了计算工作负载,同时保留了LightCone内部的精度和大规模的重力场。我们表明,我们的方法可以以最大的盒子的一半计算成本获得与传统仿真几乎相同的结果。我们还预测,对于较大和/或高分辨率模拟,这种加速度将增加到5倍。我们通过比较具有和不使用DZ的相同模拟对来评估数值集成的准确性。 LightCone Halo质量函数的偏差,天空投影的灯酮和3D物质LightCone中的偏差始终保持在0.1%以下。总而言之,我们的结果表明,DZS技术可能会提供一种高度可实现的工具,以应对下一代大规模宇宙学模拟的技术挑战。
The advent of a new generation of large-scale galaxy surveys is pushing cosmological numerical simulations in an uncharted territory. The simultaneous requirements of high resolution and very large volume pose serious technical challenges, due to their computational and data storage demand. In this paper, we present a novel approach dubbed Dynamic Zoom Simulations -- or DZS -- developed to tackle these issues. Our method is tailored to the production of lightcone outputs from N-body numerical simulations, which allow for a more efficient storage and post-processing compared to standard comoving snapshots, and more directly mimic the format of survey data. In DZS, the resolution of the simulation is dynamically decreased outside the lightcone surface, reducing the computational work load, while simultaneously preserving the accuracy inside the lightcone and the large-scale gravitational field. We show that our approach can achieve virtually identical results to traditional simulations at half of the computational cost for our largest box. We also forecast this speedup to increase up to a factor of 5 for larger and/or higher-resolution simulations. We assess the accuracy of the numerical integration by comparing pairs of identical simulations run with and without DZS. Deviations in the lightcone halo mass function, in the sky-projected lightcone, and in the 3D matter lightcone always remain below 0.1%. In summary, our results indicate that the DZS technique may provide a highly-valuable tool to address the technical challenges that will characterise the next generation of large-scale cosmological simulations.