论文标题

循环振幅单构型关系和颜色界面二重性

Loop amplitudes monodromy relations and color-kinematics duality

论文作者

Casali, Eduardo, Mizera, Sebastian, Tourkine, Piotr

论文摘要

颜色界面二元性是仪表理论的杰出猜想特性,与双复制一起,是散射幅度的许多新发展的核心。到目前为止,在大多数情况下,它的有效性仅在经验上得到了证实,缺乏超越树层的第一本理解。在本文中,我们通过详细分析了一个循环的字符串理论的单媒体关系限制的详细分析,在循环级别对颜色界面二元性和双重拷贝的第一原则理解中提供了初步步骤。在此限制下,我们剖析了产生的Feynman图的类型及其遵守的关系。我们发现,具有接触性的图是不可避免的,并且是在“散装”轮廓的现场理论极限中生成的,这些轮廓在字符串扰动理论中没有标准的物理解释。我们展示了它们与循环势头定义中的歧义有何关系,并且它们的作用正是取消这些歧义。

Color-kinematics duality is a remarkable conjectured property of gauge theory which, together with double copy, is at the heart of a wealth of new developments in scattering amplitudes. So far, its validity has been verified in most cases only empirically, lacking a first-principle understanding beyond tree-level. In this paper we provide initial steps in a first-principle understanding of color-kinematics duality and double-copy at loop level, through a detailed analysis of the field-theory limit of the monodromy relations of string theory at one loop. In this limit, we dissect the type of Feynman graphs generated and the relations they obey. We find that graphs with contact-terms are unavoidable and are generated in the field theory limit of "bulk" contours which do not have a standard physical interpretation in string perturbation theory. We show how they are related to ambiguities in the definition of the loop momentum and that their role is precisely to cancel those ambiguities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源