论文标题
电磁二元爱因斯坦 - 马克斯韦 - 斯卡尔模型
Electromagnetic dual Einstein-Maxwell-scalar models
论文作者
论文摘要
电磁二元性在爱因斯坦 - 马克斯韦 - 斯卡尔(EMS)模型的背景下进行了讨论。这个模型家族引入了两个非最小耦合功能$ f(ϕ)$和$ g(ϕ)$,具体取决于真实的标量字段$ ϕ $。将标量场解释为一种介质,一个人自然地定义了构成关系,如相对论非线性电动力学中。要求这些本构的关系在$(2)$的麦克斯韦理论的电磁双重性旋转下是不变的,定义了1个参数,在EMS模型的空间中封闭,$ \ textit {duality orbits} $,在“偶数”模型中连接不同的电磁型,但均匀的scaliant scalrient and salliant scalriant and salliant scalriant and salliant offer clepry and scalriant scalriant and salliant。该映射是一种解决方案生成技术,将特定模型的任何给定解决方案扩展到沿整个双重轨道的任何双重模型的(不同)解决方案。我们通过考虑由特定的EMS模型所播种的二元轨道来说明这一技术,其中已知的孤子和黑洞溶液是已知的。对于差异模型,特定的轮换相当于$ s $ duality。
Electromagnetic duality is discussed in the context of Einstein-Maxwell-scalar (EMS) models including axionic-type couplings. This family of models introduces two non-minimal coupling functions $f(ϕ)$ and $g(ϕ)$, depending on a real scalar field $ϕ$. Interpreting the scalar field as a medium, one naturally defines constitutive relations as in relativistic non-linear electrodynamics. Requiring these constitutive relations to be invariant under the $SO(2)$ electromagnetic duality rotations of Maxwell's theory, defines 1-parameter, closed $\textit{duality orbits}$ in the space of EMS models, connecting different electromagnetic fields in "dual" models with different coupling functions, but leaving both the scalar field and the spacetime geometry invariant. This mapping works as a solution generating technique, extending any given solution of a specific model to a (different) solution for any of the dual models along the whole duality orbit. We illustrate this technique by considering the duality orbits seeded by specific EMS models wherein solitonic and black hole solutions are known. For dilatonic models, specific rotations are equivalent to $S$-duality.