论文标题
表征编码缓存的线性内存率权衡:$(n,k)=(3,3)$ case
Characterizing Linear Memory-Rate Tradeoff of Coded Caching: The $(N,K)=(3,3)$ Case
论文作者
论文摘要
我们考虑Maddah-Ali和Niesen [1]引入的缓存问题,$(n,k)=(3,3)$ case,并使用计算机辅助方法来得出紧密的线性内存速率折衷。两个下限$ 100M+6r \ geq 15 $和$ 5M+4r \ geq 9 $证明了非香农类型。点$(m,r)的编码线性方案=(0.6,1.5)$是在对称性减少和蛮力搜索的帮助下构建的。
We consider the cache problem introduced by Maddah-ali and Niesen [1] for the $(N,K)=(3,3)$ case, and use the computer-aided approach to derive the tight linear memory-rate trade-off. Two lower bounds $10M+6R\geq 15$ and $5M+4R\geq 9$ are proved, which are non-Shannon type. A coded linear scheme of point $(M,R)=(0.6,1.5)$ is constructed with the help of symmetry reduction and brute-force search.