论文标题
fano toric品种中的卡拉比(Calabi-Yau)歧管的变形
Deformations of Calabi-Yau manifolds in Fano toric varieties
论文作者
论文摘要
在本文中,我们调查了calabi-yau歧管$ z $在感谢您的变种$ f $中的变形,这可能不光滑。特别是,我们证明了Hilbert Foundator $ h^f_z $的健忘形态在$ f $中的$ z $的无限变形给InfitIneSimal变形$ Z $的函数是平稳的。这意味着在希尔伯特计划的相应点,$ h^f_z $的平滑度。此外,我们提供了一些示例,并在Fano Etric品种中的Calabi-Yau歧管数量上包括一些计算。
In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.