论文标题
基于假设的论证中的偏好启发
Preference Elicitation in Assumption-Based Argumentation
论文作者
论文摘要
各种结构化论证框架利用偏好作为其标准推理程序的一部分,以启用偏好的推理。在本文中,我们考虑了标准推理问题的倒数,试图确定对假设的偏好可能导致得出的一组结论。我们将工作基于基于假设的论证(ABA)框架,并提出了一种算法,该算法计算和列举了与系统中可以在给定语义下获得的系统假设相比,在系统中可以从中获得的所有可能的偏好集。在描述了我们的算法之后,我们确定了它的健全性,完整性和复杂性。
Various structured argumentation frameworks utilize preferences as part of their standard inference procedure to enable reasoning with preferences. In this paper, we consider an inverse of the standard reasoning problem, seeking to identify what preferences over assumptions could lead to a given set of conclusions being drawn. We ground our work in the Assumption-Based Argumentation (ABA) framework, and present an algorithm which computes and enumerates all possible sets of preferences over the assumptions in the system from which a desired conflict free set of conclusions can be obtained under a given semantic. After describing our algorithm, we establish its soundness, completeness and complexity.