论文标题

用于深度运动重新定位的骨架感知网络

Skeleton-Aware Networks for Deep Motion Retargeting

论文作者

Aberman, Kfir, Li, Peizhuo, Lischinski, Dani, Sorkine-Hornung, Olga, Cohen-Or, Daniel, Chen, Baoquan

论文摘要

我们介绍了一个新颖的深度学习框架,用于在骨骼之间进行数据驱动的运动重新定位,该框架可能具有不同的结构,但对应于同构图。重要的是,我们的方法学习了如何重新定位,而无需在训练集中的运动之间进行任何明确的配对。我们利用这样一个事实,即通过一系列边缘合并操作可以将不同的同构骨架还原为常见的原始骨骼,我们称之为骨骼合并。因此,我们的主要技术贡献是引入新颖的可区分卷积,汇集和不致密操作员。这些操作员是骨骼感知的,这意味着它们明确地说明了骨架的层次结构和关节邻接,并且它们共同将原始运动转变为与原始骨骼关节相关的深层特征的集合。换句话说,我们的操作员形成了一个新的深度运动处理框架的构建块,该框架将运动嵌入了一个共同的潜在空间,该空间由同构骨架的集合共享。因此,可以简单地通过编码和从该潜在空间进行解码来实现重新定位。我们的实验显示了与现有方法相比,我们的运动重新定位框架以及运动处理的有效性。我们的方法还可以在包含应用于不同骨骼的一对运动的合成数据集上进行定量评估。据我们所知,我们的方法是第一个在具有不同采样链的骨骼之间进行重新定位的方法,而没有任何配对的示例。

We introduce a novel deep learning framework for data-driven motion retargeting between skeletons, which may have different structure, yet corresponding to homeomorphic graphs. Importantly, our approach learns how to retarget without requiring any explicit pairing between the motions in the training set. We leverage the fact that different homeomorphic skeletons may be reduced to a common primal skeleton by a sequence of edge merging operations, which we refer to as skeletal pooling. Thus, our main technical contribution is the introduction of novel differentiable convolution, pooling, and unpooling operators. These operators are skeleton-aware, meaning that they explicitly account for the skeleton's hierarchical structure and joint adjacency, and together they serve to transform the original motion into a collection of deep temporal features associated with the joints of the primal skeleton. In other words, our operators form the building blocks of a new deep motion processing framework that embeds the motion into a common latent space, shared by a collection of homeomorphic skeletons. Thus, retargeting can be achieved simply by encoding to, and decoding from this latent space. Our experiments show the effectiveness of our framework for motion retargeting, as well as motion processing in general, compared to existing approaches. Our approach is also quantitatively evaluated on a synthetic dataset that contains pairs of motions applied to different skeletons. To the best of our knowledge, our method is the first to perform retargeting between skeletons with differently sampled kinematic chains, without any paired examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源