论文标题
基于机器学习的数字双胞胎,用于具有多个时间尺度的动态系统
Machine learning based digital twin for dynamical systems with multiple time-scales
论文作者
论文摘要
Digital Twin Technology具有在不同工业领域(例如基础设施,航空航天和汽车)中广泛应用的巨大潜力。但是,这项技术的实际采用速度较慢,这主要是由于缺乏特定应用程序的细节。在这里,我们专注于一个数字双框架,用于线性单度结构动态系统,除了其内在的动态时间尺度外,它们以两个不同的操作时间尺度演变。我们的方法从策略上分为两个组成部分 - (a)基于物理的数据处理和响应预测的标称模型,以及(b)用于系统参数时间进化的数据驱动的机器学习模型。基于物理的标称模型是系统特异性的,并根据所考虑的问题选择。另一方面,数据驱动的机器学习模型是通用的。为了跟踪系统参数的多尺度演变,我们建议利用专家的混合物作为数据驱动的模型。在专家模型的混合物中,高斯工艺(GP)被用作专家模型。主要思想是让每个专家在一个时间尺度上跟踪系统参数的演变。为了学习“使用GP的专家混合物”的超参数,使用了一个有效的框架,可利用预期最大化和顺序的蒙特卡洛采样器。在具有刚度和/或质量变化的多时间计算动力系统上说明了数字双胞胎的性能。发现数字双胞胎是强大的,并且产生了合理准确的结果。拟议的数字双胞胎的一个令人兴奋的功能是其在未来时间阶段提供合理预测的能力。还研究了与数据质量和数据数量相关的方面。
Digital twin technology has a huge potential for widespread applications in different industrial sectors such as infrastructure, aerospace, and automotive. However, practical adoptions of this technology have been slower, mainly due to a lack of application-specific details. Here we focus on a digital twin framework for linear single-degree-of-freedom structural dynamic systems evolving in two different operational time scales in addition to its intrinsic dynamic time-scale. Our approach strategically separates into two components -- (a) a physics-based nominal model for data processing and response predictions, and (b) a data-driven machine learning model for the time-evolution of the system parameters. The physics-based nominal model is system-specific and selected based on the problem under consideration. On the other hand, the data-driven machine learning model is generic. For tracking the multi-scale evolution of the system parameters, we propose to exploit a mixture of experts as the data-driven model. Within the mixture of experts model, Gaussian Process (GP) is used as the expert model. The primary idea is to let each expert track the evolution of the system parameters at a single time-scale. For learning the hyperparameters of the `mixture of experts using GP', an efficient framework the exploits expectation-maximization and sequential Monte Carlo sampler is used. Performance of the digital twin is illustrated on a multi-timescale dynamical system with stiffness and/or mass variations. The digital twin is found to be robust and yields reasonably accurate results. One exciting feature of the proposed digital twin is its capability to provide reasonable predictions at future time-steps. Aspects related to the data quality and data quantity are also investigated.