论文标题
恩斯科(Enskog)动力学理论,用于中等密度
Enskog kinetic theory of rheology for a moderately dense inertial suspension
论文作者
论文摘要
在简单的剪切流下,用于中等密集的惯性悬浮液的恩斯科动力学理论被视为分析系统流变特性的模型。背景流体对悬浮颗粒的影响是通过粘性阻力和根据背景温度定义的类似Langevin的术语来建模的。在先前的论文中[Hayakawa等人,物理学。 Rev. E 96,042903(2017)],借助线性剪切率扩展的Grad矩方法获得了一种理论,该理论与事件驱动的Langevin langevin模拟的硬球对低密度和/或小剪切速率进行了良好的一致性。然而,以前的方法限制了对高剪切率和高密度制度的适用性。因此,在本文中,我们扩展了先前的工作,并发展了毕业生的理论,包括剪切率中的高阶项。这显着改善了理论预测,这是在高密度区域中发现的理论和模拟之间的定量一致性(体积分数小于或等于$ 0.4 $)。
The Enskog kinetic theory for moderately dense inertial suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the background fluid on suspended particles is modeled via a viscous drag force plus a Langevin-like term defined in terms of the background temperature. In a previous paper [Hayakawa et al., Phys. Rev. E 96, 042903 (2017)], Grad's moment method with the aid of a linear shear-rate expansion was employed to obtain a theory which gave good agreement with the results of event-driven Langevin simulations of hard spheres for low densities and/or small shear rates. Nevertheless, the previous approach had a limitation of applicability to the high shear-rate and high density regime. Thus, in the present paper, we extend the previous work and develop Grad's theory including higher order terms in the shear rate. This improves significantly the theoretical predictions, a quantitative agreement between theory and simulation being found in the high-density region (volume fractions smaller than or equal to $0.4$).