论文标题

用于状态依赖性延迟扰动的参数化方法

Parameterization method for state-dependent delay perturbation of an ordinary differential equation

论文作者

Yang, Jiaqi, Gimeno, Joan, de la Llave, Rafael

论文摘要

我们考虑通过将延迟添加到具有限制周期的平面普通微分方程中获得的状态依赖性延迟方程(SDDE)。这些情况出现在几个物理过程的模型中,其中添加了较小的延迟效果。即使延迟很小,它们也是非常奇异的扰动,因为SDDE的自然相空间是无限的维度空间。 我们表明,SDDE接纳了类似于颂歌的解决方案的解决方案。也就是说,存在一个周期性解决方案和两个解决方案的参数家族,其演变会收敛到周期性溶液。即使SDDE的相位空间自然是函数空间,我们也表明有一些初始值导致与ODE相似的解决方案。 证明的方法绕过了存在理论,独特性,对SDDE参数的依赖。我们考虑具有良好定义行为(例如周期性或渐近为周期性)的时间类别的函数类别,并得出功能方程,该方程施加了它们是SDDE的解决方案。使用功能分析方法研究了这些功能方程。我们提供了“后验”格式的结果:给定功能方程的近似解决方案,该方程的条件数具有良好的状态,我们证明存在接近近似值的解决方案。因此,我们可以使用结果来验证数值计算的结果。证明方法也导致实用算法。在同伴论文中,我们介绍实施细节和代表性结果。 此处介绍的方法的一个特征是,它允许对周期性解决方案的参数及其缓慢的稳定歧管获得平稳依赖性,而无需研究流动的光滑度(对于SDDE来说似乎是有问题的,因为现在流动的平滑度是$ C^1 $)。

We consider state-dependent delay equations (SDDE) obtained by adding delays to a planar ordinary differential equation with a limit cycle. These situations appear in models of several physical processes, where small delay effects are added. Even if the delays are small, they are very singular perturbations since the natural phase space of an SDDE is an infinite dimensional space. We show that the SDDE admits solutions which resemble the solutions of the ODE. That is, there exist a periodic solution and a two parameter family of solutions whose evolution converges to the periodic solution. Even if the phase space of the SDDE is naturally a space of functions, we show that there are initial values which lead to solutions similar to that of the ODE. The method of proof bypasses the theory of existence, uniqueness, dependence on parameters of SDDE. We consider the class of functions of time that have a well defined behavior (e.g. periodic, or asymptotic to periodic) and derive a functional equation which imposes that they are solutions of the SDDE. These functional equations are studied using methods of functional analysis. We provide a result in "a posteriori" format: Given an approximate solution of the functional equation, which has some good condition numbers, we prove that there is true solution close to the approximate one. Thus, we can use the result to validate the results of numerical computations. The method of proof leads also to practical algorithms. In a companion paper, we present the implementation details and representative results. One feature of the method presented here is that it allows to obtain smooth dependence on parameters for the periodic solutions and their slow stable manifolds without studying the smoothness of the flow (which seems to be problematic for SDDEs, for now the optimal result on smoothness of the flow is $C^1$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源