论文标题

基于二氧化钒的频谱选择性可调式元发射器,用于动态辐射冷却

Spectrally-Selective Vanadium Dioxide Based Tunable Metafilm Emitter for Dynamic Radiative Cooling

论文作者

Taylor, Sydney, McBurney, Ryan, Long, Linshuang, Sabbaghi, Payam, Chao, Jeremy, Wang, Liping

论文摘要

在这项研究中,通过波长选择的可调式元发射器在这项研究中证明了具有可变发电功率的动态辐射冷却,该发射器由不透明的铝制膜,溅射的硅间距和热染色液辐射(Vo2)层组成。从光谱反射率测量中获得的温度依赖性光谱发射率清楚地表明,当VO2在65c附近经历绝缘体到金属相变时,在10 um波长附近的发射峰。可调元发射极可显着从室温下的0.14到100c时的0.6实现了显着的总发射率。基于薄膜光学器件的理论建模表明,高温下的发射增强是通过金属VO2膜通过Fabry-Perrot腔共鸣来实现的。此外,与黑色,铝和掺杂的硅样品相比,在高于相变温度的温度下,在高于相变温度的温度下,实验证明了基于量热的热真空实验,并在高于相变温度的温度下实验证明了制造的可调式元纤维样品的热发射,其发射率几乎没有室温的变化。开发的可调式元发射器在中红外的频谱选择性发射量变化,对地面和外星动态辐射冷却应用都具有巨大的希望。

Dynamic radiative cooling with variable emissive power is experimentally demonstrated in this study by a wavelength-selective tunable metafilm emitter, which consists of an opaque aluminum film, a sputtered silicon spacer, and a thermochromic vanadium dioxide (VO2) layer fabricated by a furnace oxidation method. The temperature-dependent spectral emittance, experimentally obtained from spectral reflectance measurements, clearly shows a pronounced emission peak around 10 um wavelength when the VO2 experiences an insulator-to-metal phase transition near 65C. The tunable metafilm emitter achieves a significant total emittance increase from 0.14 at room temperature to 0.6 at 100C. Theoretical modeling based on thin-film optics indicates that the emission enhancement at high temperatures is realized by Fabry-Perot cavity resonance with the metallic VO2 film. Moreover, a calorimetry-based thermal vacuum experiment was conducted and the enhanced thermal emission of the fabricated tunable metafilm sample was experimentally demonstrated at temperatures higher than the phase transition temperature, compared to black, aluminum and doped silicon samples, whose emittance changes little near room temperatures. The developed tunable metafilm emitter with variable spectrally-selective emittance in the mid-infrared holds great promise for both terrestrial and extraterrestrial dynamic radiative cooling applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源