论文标题

多个注意力金字塔网络用于中草药识别

Multiple Attentional Pyramid Networks for Chinese Herbal Recognition

论文作者

Xu, Yingxue, Wen, Guihua, Hu, Yang, Luo, Mingnan, Dai, Dan, Zhuang, Yishan, Hall, Wendy

论文摘要

中药在中医中起着至关重要的作用。由于颗粒状的识别不同,只有经验丰富的专业人员才能准确地认可它们。预计可以使用机器学习等新技术自动识别它们。但是,没有可用的中国草药图像数据集。同时,没有机器学习方法可以很好地处理中草药图像识别。因此,本文始于构建新的标准中文数据集。随后,提出了一个新的注意金字塔网络(APN),以用于中草药识别,其中提出了新颖的竞争关注和空间协作的关注,然后应用。 APN可以以不同的特征尺度自适应地对中草药图像进行建模。最后,提出了一个新的中草药识别框架作为APN的新应用。实验是在我们构造的数据集上进行的,并验证了我们方法的有效性。

Chinese herbs play a critical role in Traditional Chinese Medicine. Due to different recognition granularity, they can be recognized accurately only by professionals with much experience. It is expected that they can be recognized automatically using new techniques like machine learning. However, there is no Chinese herbal image dataset available. Simultaneously, there is no machine learning method which can deal with Chinese herbal image recognition well. Therefore, this paper begins with building a new standard Chinese-Herbs dataset. Subsequently, a new Attentional Pyramid Networks (APN) for Chinese herbal recognition is proposed, where both novel competitive attention and spatial collaborative attention are proposed and then applied. APN can adaptively model Chinese herbal images with different feature scales. Finally, a new framework for Chinese herbal recognition is proposed as a new application of APN. Experiments are conducted on our constructed dataset and validate the effectiveness of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源