论文标题

通过不同进化模型的医院数据的适应性,法国的Covid-19区域分析

Regional analysis of COVID-19 in France from fit of hospital data with different evolutionary models

论文作者

Mamon, Gary A.

论文摘要

与观察到的观察结果相比,SIR进化模型预测,在国家锁定开始后,在法国感染了Covid-19的人的分数太急剧下降了。我适合日常医院数据:使用扩展的SEIR模型到达常规和重症监护单元,释放和死亡。这些涉及在整个国家的进化时间尺度与分支分数的比率,以及在国家锁定之前和期间的基本繁殖编号,$ r_0 $ $ r_0 $。贝叶斯贝叶斯分析允许对时间/分数比和院前分数进行精确评估。这些模型非常适合医院的数据,但重症监护的到来速度比预测的快速降低,表明随着时间的流逝,治疗方法更好。分析在锁定前平均,分析在锁定前的$ r_0 $ = 3.4 $ \ pm $ 0.1,锁定期间0.65 $ \ pm $ 0.04(90%C.L.),区域变化很小。 2020年5月11日,法国的感染死亡率为4 $ \ pm $ 1%(90%C.L.),而发烧的人数远远超过了无症状,与早期阶段相反。没有封锁和社会疏远,在法国将发生超过200万人死亡,而在法国将发生超过200万人死亡,而10天前将被执行的锁定将导致不到1000人死亡。到2020年4月下旬,在整个法国(巴黎的3%)(95%C.L.),免疫人员的一部分达到了低于1%的高原,表明缺乏群疫苗。 5月11日,当锁定部分被解除时,面罩的广泛可用性应保持$ r_0 $,如果至少有46%的人口将它们戴在家里外面。否则,如果没有增强的其他社会距离,第二波是不可避免的,并且在5月初至10月之间(如果$ r_0 $ = 1.2)甚至6月下旬(如果$ r_0 $ = 2),则导致死亡人数三倍。

The SIR evolutionary model predicts too sharp a decrease of the fractions of people infected with COVID-19 in France after the start of the national lockdown, compared to what is observed. I fit the daily hospital data: arrivals in regular and critical care units, releases and deaths, using extended SEIR models. These involve ratios of evolutionary timescales to branching fractions, assumed uniform throughout a country, and the basic reproduction number, $R_0$, before and during the national lockdown, for each region of France. The joint-region Bayesian analysis allows precise evaluations of the time/fraction ratios and pre-hospitalized fractions. The hospital data are well fit by the models, except the arrivals in critical care, which decrease faster than predicted, indicating better treatment over time. Averaged over France, the analysis yields $R_0$= 3.4$\pm$0.1 before the lockdown and 0.65$\pm$0.04 (90% c.l.) during the lockdown, with small regional variations. On 11 May 2020, the Infection Fatality Rate in France was 4 $\pm$1% (90% c.l.), while the Feverish vastly outnumber the Asymptomatic, contrary to the early phases. Without the lockdown nor social distancing, over 2 million deaths from COVID-19 would have occurred throughout France, while a lockdown that would have been enforced 10 days earlier would have led to less than 1000 deaths. The fraction of immunized people reached a plateau below 1% throughout France (3% in Paris) by late April 2020 (95% c.l.), suggesting a lack of herd immunity. The widespread availability of face masks on 11 May, when the lockdown was partially lifted, should keep $R_0$ below unity if at least 46% of the population wear them outside their home. Otherwise, without enhanced other social distancing, a second wave is inevitable and cause the number of deaths to triple between early May and October (if $R_0$=1.2) or even late June (if $R_0$=2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源