论文标题
动量空间中的共形场理论和重力中的异常作用:三分和四点函数的分析
Conformal field theory in momentum space and anomaly actions in gravity:The analysis of three- and four-point functions
论文作者
论文摘要
在简要概述了坐标空间中共形场理论的一般方面的简要概述之后,在第一部分中,我们回顾了动量空间中三分和四点函数在维度中的共形约束的解决方案$ d \ geq 2 $,形式为保形病房身份(CWI)。我们将讨论集中于对包含应力能量张量$(t)$的相关器分析,保守电流$(j)$和标量运营商$(o)$。对于标量四点函数,我们简要讨论了我们仅由CWI识别的这种方程式的双重共形解的方法,并且与我们在先前工作中引入的保形扬吉对称性有关。在与$ t $张量的相关函数(围绕平坦的时空评估)中,共形异常的特征是(非本地)在特定形式中的无质量杆的交换(非本地)交换,该签名是在自由田间理论和非扰动中都进行了研究,通过求解了共形约束。我们讨论了有效的动作,并直接从其路径积分定义及其Weyl对称性中说明了CWI的推导,这是在平面空间中共形场理论中使用的标准操作方法的替代方法。对于两点和三点功能,我们详细介绍了这些类型的相关器与自由场理论的匹配。一环的CFT的扰动实现提供了CWI确定的一般解决方案的最简单表达式,用于通用操作员$ t $,$ j $和特定规模尺寸的标量,通过适当的选择字段内容。在技术附录中,我们提供了有关Bzowski,McFadden和Skenderis的重建$ TTO $和$ TTT $相关器的详细信息,尤其是该方法的次要病房身份,以与扰动描述建立完整的匹配。
After a brief outline of general aspects of conformal field theories in coordinate space, in a first part we review the solution of the conformal constraints of three- and four-point functions in momentum space in dimensions $d\geq 2$, in the form of conformal Ward identities (CWI's). We center our discussion on the analysis of correlators containing stress-energy tensors $(T)$, conserved currents $(J)$, and scalar operators $(O)$. For scalar four-point functions, we briefly discuss our method for determining the dual conformal solutions of such equations, identified only by the CWI's, and related to the conformal Yangian symmetry, introduced by us in previous work. In correlation functions with $T$ tensors, evaluated around a flat spacetime, the conformal anomaly is characterized by the (non-local) exchange of massless poles in specific form factors, a signature that has been investigated both in free field theory and non-perturbatively, by solving the conformal constraints. We discuss the anomaly effective action, and illustrate the derivation of the CWI's directly from its path integral definition and its Weyl symmetry, which is alternative to the standard operatorial approach used in conformal field theories in flat space. For two- and three-point functions, we elaborate on the matching of these types of correlators to free-field theories. Perturbative realizations of CFTs at one-loop provide the simplest expressions of the general solutions identified by the CWI's, for generic operators $T$, $J$, and scalars of specific scaling dimensions, by an appropriate choice of their field content. In a technical appendix we offer details on the reconstruction of the $TTO$ and $TTT$ correlators in the approach of Bzowski, McFadden and Skenderis, and specifically on the secondary Ward identities of the method, in order to establish a complete match with the perturbative description.