论文标题

概率ZETA函数没有负系数的涂料组

Profinite groups in which the probabilistic zeta function has no negative coefficients

论文作者

Detomi, Eloisa, Lucchini, Andrea

论文摘要

相关的是有限生成的产品组$ g $,一个正式的dirichlet系列$ p_g(s)= \ sum_ {n \ in \ mathbb n} {a_n(g)}/{n^s} $是关联的$ g的开放子组的晶格的功能。当$ g $是prosoluble时,$(p_g(s))^{ - 1} $的每个系数都是无负的。在本文中,我们讨论了一般案例,并产生了一个非销售示例的%存在,并与同一属性构建了一个非验证有限生成的组$ g $。

To a finitely generated profinite group $G$, a formal Dirichlet series $P_G(s)=\sum_{n \in \mathbb N} {a_n(G)}/{n^s}$ is associated, where $a_n(G)=\sum_{|G:H|=n}μ(H, G)$ and $μ(H,G)$ denotes the Möbius function of the lattice of open subgroups of $G.$ Its formal inverse $P_G^{-1}(s)$ is the probabilistic zeta function of $G$. When $G$ is prosoluble, every coefficient of $(P_G(s))^{-1}$ is nonnegative. In this paper we discuss the general case and we produce % existence of a non-prosoluble example and We construct a non-prosoluble finitely generated group $G$ with the same property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源