论文标题
Ecopann:使用人工神经网络估算宇宙参数的框架
ECoPANN: A Framework for Estimating Cosmological Parameters using Artificial Neural Networks
论文作者
论文摘要
在这项工作中,我们提出了一种基于人工神经网络(ANN)准确估算宇宙学参数的新方法,并开发了一种称为Ecopann的代码(估算ANN估算宇宙学参数)以实现参数推断。我们通过使用宇宙微波背景(CMB)的模拟温度功率谱估算一致性宇宙学模型的基本参数来测试ANN方法。结果表明,与马尔可夫链蒙特卡洛(MCMC)方法相比,ANN在最佳拟合值和参数误差以及参数之间的相关性方面表现出色。此外,对于训练有素的ANN模型,它能够估算具有不同精度的多个实验的参数,这些实验可以大大减少时间的消耗和计算参数推断的计算资源。此外,我们将ANN扩展到多支气网络,以实现对参数的关节约束。我们使用CMB的模拟温度和极化功率谱,IA型超新星和Baryon声学振荡测试多发性网络,几乎获得了与MCMC方法相同的结果。因此,我们建议ANN可以提供一种替代方法来准确,快速估计宇宙学参数,并且可以将Ecopann应用于宇宙学甚至其他更广泛的科学领域的研究。
In this work, we present a new method to estimate cosmological parameters accurately based on the artificial neural network (ANN), and a code called ECoPANN (Estimating Cosmological Parameters with ANN) is developed to achieve parameter inference. We test the ANN method by estimating the basic parameters of the concordance cosmological model using the simulated temperature power spectrum of the cosmic microwave background (CMB). The results show that the ANN performs excellently on best-fit values and errors of parameters, as well as correlations between parameters when compared with that of the Markov Chain Monte Carlo (MCMC) method. Besides, for a well-trained ANN model, it is capable of estimating parameters for multiple experiments that have different precisions, which can greatly reduce the consumption of time and computing resources for parameter inference. Furthermore, we extend the ANN to a multibranch network to achieve a joint constraint on parameters. We test the multibranch network using the simulated temperature and polarization power spectra of the CMB, Type Ia supernovae, and baryon acoustic oscillations, and almost obtain the same results as the MCMC method. Therefore, we propose that the ANN can provide an alternative way to accurately and quickly estimate cosmological parameters, and ECoPANN can be applied to the research of cosmology and even other broader scientific fields.