论文标题

癫痫发作预测:概率癫痫发作风险评估和数据融合

Epileptic Seizure Forecasting: Probabilistic seizure-risk assessment and data-fusion

论文作者

Truong, Nhan Duy, Yang, Yikai, Maher, Christina, Nikpour, Armin, Kavehei, Omid

论文摘要

癫痫发作预测,再加上预防疗法的提供,有可能大大改善癫痫患者及其护理人员的生活质量。预测癫痫发作还可以防止一些潜在的灾难性后果,例如受伤和死亡,除了可能为医院的患者护理提供的一系列潜在临床益处。癫痫发作预测的挑战在于看似无法预测的大脑动态过渡到发作状态。关于确定癫痫发作风险的计算研究的主体仅集中在预测算法上,这涉及一个显着的平衡准确性和虚假警报的问题。在本文中,我们开发了一种癫痫发作的警告系统,该警告系统采用贝叶斯卷积神经网络(BCNN)向患者提供有意义的信息,并为他/她提供更大的机会,使他/她有可能更多地负责他/她的健康。我们使用头皮脑电图(EEG)信号,并发布有关我们自动癫痫风险评估确定性的信息。在此过程中,我们为合并辅助信号铺平了基础工作,以改善我们的基于EEG的癫痫发作风险评估系统。我们以前的CNN结果表明,平均AUC为74.65%,而我们可以在仅EEG BCNN的平均AUC上取得68.70%的平均AUC。在这项研究的这一阶段,性能下降是为患者提供更丰富信息的成本。

Epileptic seizure forecasting, combined with the delivery of preventative therapies, holds the potential to greatly improve the quality of life for epilepsy patients and their caregivers. Forecasting seizures could prevent some potentially catastrophic consequences such as injury and death in addition to a long list of potential clinical benefits it may provide for patient care in hospitals. The challenge of seizure forecasting lies within the seemingly unpredictable transitions of brain dynamics into the ictal state. The main body of computational research on determining seizure risk has been focused solely on prediction algorithms, which involves a remarkable issue of balancing accuracy and false-alarms. In this paper, we developed a seizure-risk warning system that employs Bayesian convolutional neural network (BCNN) to provide meaningful information to the patient and provide a greater opportunity for him/her to be potentially more in charge of his/her health. We use scalp electroencephalogram (EEG) signals and release information on the certainty of our automatic seizure-risk assessment. In the process, we pave the ground-work towards incorporating auxiliary signals to improve our EEG-based seizure-risk assessment system. Our previous CNN results show an average AUC of 74.65% while we could achieve on an EEG-only BCNN an average AUC of 68.70%. This drop in performance is the cost of providing richer information to the patient at this stage of this research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源