论文标题

呈现最大延伸的Galois组和受限的分支

Presentations of Galois groups of maximal extensions with restricted ramification

论文作者

Liu, Yuan

论文摘要

在卢博兹基(Lubotzky)的工作中,我们使用加洛伊斯(Galois)共同体来研究发电机数量和最小关系数量的差异,在Galois组$ g_s $ g_s $ g_s(k)$的最大扩展$ k $的最大扩展中,该$ k $的最大扩展是在有限的地方,$ k $ k $ a $ a $ a $ quarties $ n decies $ quartions $ q $ q $ q $ q a $ q。我们证明了全球Euler-Poincaré特征的广义版本,并为每个有限的简单$ G_S(k)$ - $ - 模块$ a $定义了$ b_s(k,a)$,以推广Koch的工作 - $ $ $ \ ell $ $ $ $ $ $ $ $ g_s(k)$ $ g_s(k)$ conecte $ g_s $ g g g_s $ g_s $ g_s $ $ g_s $。在非亚伯群岛的启发式方法的设置中,我们证明了刘-wood-wood-wood-wood-zureick-brown猜想所研究的对象总是可以通过定义中构建的随机组来实现的。

Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of the Galois group $G_S(k)$ of the maximal extension of a global field $k$ that is unramified outside a finite set $S$ of places, as $k$ varies among a certain family of extensions of a fixed global field $Q$. We prove a generalized version of the global Euler-Poincaré Characteristic, and define a group $B_S(k,A)$, for each finite simple $G_S(k)$-module $A$, to generalize the work of Koch about the pro-$\ell$ completion of $G_S(k)$ to study the whole group $G_S(k)$. In the setting of the nonabelian Cohen-Lenstra heuristics, we prove that the objects studied by the Liu--Wood--Zureick-Brown conjecture are always achievable by the random group that is constructed in the definition the probability measure in the conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源