论文标题
Lagrangian Submanifolds支持的同源性镜像三倍
Homology supported in Lagrangian submanifolds in mirror quintic threefolds
论文作者
论文摘要
在本说明中,我们研究了镜子五重奏calabi-yau三倍的同源周期,这可以通过特殊的拉格朗日亚曼菲尔德实现。我们已经使用了Picard-Lefschetz理论来建立单一动作并研究拉格朗日消失的周期的轨道。对于许多质数$ p $,我们可以计算轨道模型$ p $。我们推测,具有$ \ mathbb {z} $系数的同源性轨道可以由这些轨道确定,这些轨道具有$ \ mathbb {z} _p $中的系数。
In this note we study homological cycles in the mirror quintic Calabi-Yau threefold which can be realized by special Lagrangian submanifolds. We have used Picard-Lefschetz theory to establish the monodromy action and to study the orbit of Lagrangian vanishing cycles. For many prime numbers $p$ we can compute the orbit modulo $p$. We conjecture that the orbit in homology with coefficients in $\mathbb{Z}$ can be determined by these orbits with coefficients in $\mathbb{Z}_p$.