论文标题

红色:用于睡眠脑电图的深度复发性神经网络检测

RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection

论文作者

Tapia, Nicolás I., Estévez, Pablo A.

论文摘要

大脑电活动在睡眠过程中提出了几个短暂的事件,可以将其视为脑电图(EEG)中的独特微结构,例如睡眠纺锤体和K-复合物。这些事件与生物学过程和神经系统疾病有关,使其成为睡眠医学的研究主题。但是,手动检测限制了他们的研究,因为它耗时,并受到重大专家间变异性的影响,激励自动方法。我们提出了一种基于卷积和复发性神经网络的深度学习方法,用于睡眠EEG事件检测,称为复发事件检测器(RED)。红色使用两个输入表示之一:a)时间域脑电图信号,或b)用连续小波变换(CWT)获得的信号的复杂频谱图。与以前的方法不同,避免了固定的时间窗口,并集成了时间上下文以更好地模仿专家的视觉标准。当在质量数据集上进行评估时,我们的检测器的表现在睡眠纺锤体和K-复合物检测中的平均F1分数至少为80.9%和82.6%。尽管CWT域模型的性能比其时域的表现相似,但由于使用频谱图,前者原则上允许更容易解释的输入表示形式。所提出的方法是事件不合时宜的,可直接用于检测其他类型的睡眠事件。

The brain electrical activity presents several short events during sleep that can be observed as distinctive micro-structures in the electroencephalogram (EEG), such as sleep spindles and K-complexes. These events have been associated with biological processes and neurological disorders, making them a research topic in sleep medicine. However, manual detection limits their study because it is time-consuming and affected by significant inter-expert variability, motivating automatic approaches. We propose a deep learning approach based on convolutional and recurrent neural networks for sleep EEG event detection called Recurrent Event Detector (RED). RED uses one of two input representations: a) the time-domain EEG signal, or b) a complex spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT). Unlike previous approaches, a fixed time window is avoided and temporal context is integrated to better emulate the visual criteria of experts. When evaluated on the MASS dataset, our detectors outperform the state of the art in both sleep spindle and K-complex detection with a mean F1-score of at least 80.9% and 82.6%, respectively. Although the CWT-domain model obtained a similar performance than its time-domain counterpart, the former allows in principle a more interpretable input representation due to the use of a spectrogram. The proposed approach is event-agnostic and can be used directly to detect other types of sleep events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源