论文标题
多用户二进制子空间的重建
Reconstruction of Multi-user Binary Subspace Chirps
论文作者
论文摘要
我们考虑由$ n = 2^m $ dimensions中的二进制子空间鸣叫(BSSC)组成的复杂格拉曼尼亚线的代码簿。 BSSC是二进制chir(BC)的概括,它们的条目要么是统一的第四根,要么是零。 BSSC由非零子空间中的BC组成,该子空间由On-Off模式描述。在探索潜在的二进制符号几何形状时,我们为BSSC重建提供了一个统一的框架 - - 开关模式和BC识别都与基础Heisenberg-Weyl代数的稳定剂有关。在多用户随机访问方案中,我们显示出可靠的重建多个具有低复杂性的多个传播BSSC的可靠性。
We consider codebooks of Complex Grassmannian Lines consisting of Binary Subspace Chirps (BSSCs) in $N = 2^m$ dimensions. BSSCs are generalizations of Binary Chirps (BCs), their entries are either fourth-roots of unity, or zero. BSSCs consist of a BC in a non-zero subspace, described by an on-off pattern. Exploring the underlying binary symplectic geometry, we provide a unified framework for BSSC reconstruction---both on-off pattern and BC identification are related to stabilizer states of the underlying Heisenberg-Weyl algebra. In a multi-user random access scenario we show feasibility of reliable reconstruction of multiple simultaneously transmitted BSSCs with low complexity.