论文标题
某些混合订单式式式操作员和广义的dirichlet-neumann张量场的索引
The Index of Some Mixed Order Dirac-Type Operators and Generalised Dirichlet-Neumann Tensor Fields
论文作者
论文摘要
我们使用密集的,封闭的线性操作员的希尔伯特建筑群重新审视弗雷德尔姆运营商的建筑原理,并将其应用于差分操作员的特定选择。然后在明确描述广义(“谐波”)Dirichlet和Neumann Tensor Fields的共同体学组的维度的帮助下计算所得索引。该贡献的主要结果是计算与弹性复合物和新发现的Biharmonic复合物相关的DIRAC型操作员指数,与Biharmonic方程,弹性以及一般相对论有关。差分运算符是混合顺序的,不能被视为具有相对紧凑的扰动的领先顺序类型。作为一个副产品,我们介绍了基本的广义dirichlet-neumann vector和Tensor场的全面描述,这些载体定义了各个共同体学组,包括根据拓扑不变性的显式构建基础,这些拓扑不变性既具有分析性和数值利益。尽管是由某些投影机制定义的,但我们将通过解决以变分形式给出的某些PDE来介绍一种计算这些基础函数的方法。为此,我们在Rainer Picard [1982]的作品中重现了核心论点,应用于De Rham复合体,并将其用作此处提出的更多涉及案例的蓝图。从传来的角度来看,我们还提供了对弹性或一般相对论理论有用的广义繁殖液化类型的新矢量分析估计。
We revisit a construction principle of Fredholm operators using Hilbert complexes of densely defined, closed linear operators and apply this to particular choices of differential operators. The resulting index is then computed with the help of explicitly describing the dimension of the cohomology groups of generalised (`harmonic') Dirichlet and Neumann tensor fields. The main results of this contribution are the computation of the indices of Dirac-type operators associated to the elasticity complex and the newly found biharmonic complex, relevant for the biharmonic equation, elasticity, and for the theory of general relativity. The differential operators are of mixed order and cannot be seen as leading order type with relatively compact perturbation. As a by-product we present a comprehensive description of the underlying generalised Dirichlet-Neumann vector and tensor fields defining the respective cohomology groups, including an explicit construction of bases in terms of topological invariants, which are of both analytical and numerical interest. Though being defined by certain projection mechanisms, we shall present a way of computing these basis functions by solving certain PDEs given in variational form. For all of this we rephrase core arguments in the work of Rainer Picard [1982] applied to the de Rham complex and use them as a blueprint for the more involved cases presented here. In passing, we also provide new vector-analytical estimates of generalised Poincare-Friedrichs type useful for elasticity or the theory of general relativity.