论文标题

在多波段时间序列数据中建模随机变异性

Modeling Stochastic Variability in Multi-Band Time Series Data

论文作者

Hu, Zhirui, Tak, Hyungsuk

论文摘要

为了为即将进行的大规模调查的时域天文学时代做准备,我们提出了多变量阻尼的随机步行过程的状态空间表示,作为一种工具,以分析具有异性效果测量误差的不规则间隔的多滤波器光曲线。我们采用计算高效且可扩展的Kalman过滤方法来评估似然函数,从而导致最大$ O(k^3n)$复杂性,其中$ k $是可用频段的数量,$ n $是$ k $频段的独特观察时间数量。与常用单变量高斯过程相比,这是一个重要的计算优势,该过程可以将所有多波段光曲线叠加在一个最大$ o(k^3n^3)$复杂性的一个向量中。使用如此有效的可能性计算,我们提供模型参数的最大似然估计和贝叶斯后验样品。提出了三个数字插图; (i)分析模拟的五波段光曲线,以与独立的单频拟合进行比较; (ii)分析从斯隆数字天空调查(SDSS)条带〜82获得的类星体的五波段光曲线,以估计短期可变性和时间表; (iii)分析重力镜头的$ g $ - 和$ r $ - 带灯曲线Q0957+561,以推断时间延迟。公开使用两个R包RDRW和TIMEDELAY,可公开使用建议的型号。

In preparation for the era of the time-domain astronomy with upcoming large-scale surveys, we propose a state-space representation of a multivariate damped random walk process as a tool to analyze irregularly-spaced multi-filter light curves with heteroscedastic measurement errors. We adopt a computationally efficient and scalable Kalman-filtering approach to evaluate the likelihood function, leading to maximum $O(k^3n)$ complexity, where $k$ is the number of available bands and $n$ is the number of unique observation times across the $k$ bands. This is a significant computational advantage over a commonly used univariate Gaussian process that can stack up all multi-band light curves in one vector with maximum $O(k^3n^3)$ complexity. Using such efficient likelihood computation, we provide both maximum likelihood estimates and Bayesian posterior samples of the model parameters. Three numerical illustrations are presented; (i) analyzing simulated five-band light curves for a comparison with independent single-band fits; (ii) analyzing five-band light curves of a quasar obtained from the Sloan Digital Sky Survey (SDSS) Stripe~82 to estimate the short-term variability and timescale; (iii) analyzing gravitationally lensed $g$- and $r$-band light curves of Q0957+561 to infer the time delay. Two R packages, Rdrw and timedelay, are publicly available to fit the proposed models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源