论文标题
$ x^*$ with弱*统一的kadec-klee财产具有财产($ k^*$)
$X^*$ with weak* uniform Kadec-Klee property has Property($K^*$)
论文作者
论文摘要
结果表明,如果双球的$ x^*$的二元空间的双重*依次紧凑,则具有弱*统一的kadec-klee属性,则$ x^*$具有属性($ k^*$)。在反向含义不存在的情况下给出一个示例。也就是说,有一个Banach Space $ x $,其双重$ x^*$具有属性($ k^*$),但$ x^*$没有弱*统一的Kadec-Klee属性。
It is shown that if the dual of a Banach space, $X^*$, where the dual ball is weak* sequentially compact, has the weak* uniform Kadec-Klee property then $X^*$ has Property($K^*$). An example is given where the reverse implication does not hold. That is, there is a Banach space $X$ whose dual, $X^*$, has Property($K^*$) but $X^*$ does not have the weak* uniform Kadec-Klee property.