论文标题
端到端的车道标记通过行分类检测
End-to-End Lane Marker Detection via Row-wise Classification
论文作者
论文摘要
在自动驾驶中,检测可靠和准确的车道标记位置是一项至关重要但又具有挑战性的任务。车道标记检测问题的常规方法执行像素级密集的预测任务,然后进行复杂的后处理,这是不可避免的,因为车道标记通常由无厚度的线段集合表示。在本文中,我们提出了一种以端到端方式执行直接巷标记顶点预测的方法,即没有像素级密集的预测任务中需要的任何后处理步骤。具体来说,我们将车道标记检测问题转化为行列分类任务,该任务利用了巷道标记的先天形状,但令人惊讶的是,尚未得到很好的探索。为了紧凑地提取有关泳道标记物的足够信息,这些标记物从图像中从左向右延伸到右侧,我们设计了一个新型层,该层可连续压缩水平组件,因此启用了端到端的车道标记检测系统,其中最终车道标记物位置仅通过测试时间中的Argmax操作即可获得最终车道标记。实验结果证明了所提出的方法的有效性,该方法在两个流行的车道标记检测基准(即Tusimple和Culane)上的最先进方法或胜过最先进的方法。
In autonomous driving, detecting reliable and accurate lane marker positions is a crucial yet challenging task. The conventional approaches for the lane marker detection problem perform a pixel-level dense prediction task followed by sophisticated post-processing that is inevitable since lane markers are typically represented by a collection of line segments without thickness. In this paper, we propose a method performing direct lane marker vertex prediction in an end-to-end manner, i.e., without any post-processing step that is required in the pixel-level dense prediction task. Specifically, we translate the lane marker detection problem into a row-wise classification task, which takes advantage of the innate shape of lane markers but, surprisingly, has not been explored well. In order to compactly extract sufficient information about lane markers which spread from the left to the right in an image, we devise a novel layer, which is utilized to successively compress horizontal components so enables an end-to-end lane marker detection system where the final lane marker positions are simply obtained via argmax operations in testing time. Experimental results demonstrate the effectiveness of the proposed method, which is on par or outperforms the state-of-the-art methods on two popular lane marker detection benchmarks, i.e., TuSimple and CULane.