论文标题
可重写光栅的空间分辨绝缘器 - 金属过渡
Spatially-resolved insulator-metal transition for rewritable optical gratings
论文作者
论文摘要
掺杂是调整金属氧化物1-5特性的有效方法,以实现功能性氧化物电子6-8。以前,我们通过使用电子普罗顿协同掺杂策略在环境条件下开发了可控的氢掺杂技术,这使人们能够摆脱传统技术所需的高温/压力处理。9。在这里,基于这一简便的掺杂途径,我们为钨三氧化钨(WO3)膜实现了视觉和可逆的绝缘剂 - 金属过渡(MIT)。它出色的空间选择与标准UV光刻相媲美,这表明成为重写WO3光栅设备制造的可行方式的潜力。此外,获得的WO3结构光栅的周期也可以轻松地通过掺杂区域的选择来更改。这种先进的掺杂技术开辟了不仅开发光学设备的替代方法,还开发了可重写的离子设备和各种氧化物电子设备的集成电路。
Doping is an effective way to tune the property of metal oxides1-5, for achieving functional oxide electronics6-8. Previously we developed a controllable hydrogen doping technology at ambient conditions by use of electron-proton synergistic doping strategy, which enables one to get rid of high-temperature/pressure treatments required by traditional technologies9. Here, based on this facile doping route, we achieve a visual and reversible insulator-metal transition (MIT) for tungsten trioxide (WO3) film. Its outstanding spatial selection is comparable to standard UV lithography, which shows the potential of becoming a viable way for rewritable WO3 grating device fabrication. Furthermore, the period of the obtained WO3 structural grating can also be easily changed for requirement by doping area selection. This advanced doping technology opens up alternative approaches for developing not only optical devices, but also rewritable ions devices and integrated circuits for various oxide electronics.