论文标题
耦合的光力纳米量子器中的双重同步混乱
Bichromatic synchronized chaos in coupled optomechanical nanoresonators
论文作者
论文摘要
同步和混乱本质上是两个众所周知且普遍存在的现象。有趣的是,在特定条件下,耦合的混沌系统可以在其某些可观察的物品中显示同步。在这里,我们在实验中研究了两种非相同机械耦合的光力纳米腔的混乱的途径上的双重同步。一个谐振器的机电近谐振激发证明了耦合机械模式的滞后行为,在振幅调制下,该模式可以达到混乱的状态。通过实验参数的完整校准,通过耦合定期强迫谐振器对系统的全相空间进行直接测量,可以直接测量系统的整个相位空间。这表明,除了混乱从机械转移到光学频域的转移外,还会发生两个非相同子系统之间的空间混沌转移。在同时激发耦合膜模式的情况下,我们还证明了正常模式的两个不同载体频率在四个不同的载体频率下的双裂混沌同步。由于非线性引起的模态正交性破坏,它们各自的正交幅度始终同步。 同时,它们的相显示了复杂的动力学,并且在混乱方面具有不完美的同步。我们的通用模型再次与观察到的同步动力学进行了定量一致。这些结果为尚未开发的集体动力学的实验研究奠定了基础,例如在强耦合的,纳米级非线性振荡器的阵列中,用于应用的应用,从精确的测量到从多光谱混沌加密和随机的比特生成,以及对模拟计算的范围。
Synchronization and chaos are two well known and ubiquitous phenomena in nature. Interestingly, under specific conditions, coupled chaotic systems can display synchronization in some of their observables. Here, we experimentally investigate bichromatic synchronization on the route to chaos of two non-identical mechanically coupled optomechanical nanocavities. Electromechanical near-resonant excitation of one of the resonators evidences hysteretic behaviors of the coupled mechanical modes which can, under amplitude modulation, reach the chaotic regime. The observations, allowing to measure directly the full phase space of the system, are accurately modeled by coupled periodically forced Duffing resonators thanks to a complete calibration of the experimental parameters. This shows that, besides chaos transfer from the mechanical to the optical frequency domain, spatial chaos transfer between the two nonidentical subsystems occurs. Upon simultaneous excitations of the coupled membranes modes, we also demonstrate bichromatic chaos synchronization between quadratures at the two distinct carrier frequencies of the normal modes. Their respective quadrature amplitudes are consistently synchronized thanks to the modal orthogonality breaking induced by the nonlinearity. Meanwhile, their phases show complex dynamics with imperfect synchronization in the chaotic regime. Our generic model agrees again quantitatively with the observed synchronization dynamics. These results set the ground for the experimental study of yet unexplored collective dynamics of e.g synchronization in arrays of strongly coupled, nanoscale nonlinear oscillators for applications ranging from precise measurements to multispectral chaotic encryption and random bit generation, and to analog computing, to mention a few.