论文标题
DMC的突触通道建模:神经递质的吸收和三方突触中的溢出
Synaptic Channel Modeling for DMC: Neurotransmitter Uptake and Spillover in the Tripartite Synapse
论文作者
论文摘要
在扩散分子通信(DMC)中,信息通过扩散分子传递。突触信号作为该范式的自然实现,包括一旦理解的功能组件,可以促进合成DMC系统的开发。然而,为了释放这一潜力,需要彻底了解基于生物物理原理的突触通信渠道。由于突触传播在关键上也取决于非神经细胞,因此这种理解需要考虑所谓的三方突触。在本文中,我们开发了三方突触的综合渠道模型,其中涵盖了突触裂口的三维,有限尺寸的空间模型,突触前神经元的分子吸收和神经胶质细胞的分子吸收,可逆地结合在突触后神经元和溢出的空间与外部空间的单个受体的结合。基于此模型,我们得出了突触DMC系统的通道脉冲响应(CIR)的分析时间域表达式以及分别在突触前神经元和神经胶质细胞处占据的分子数。这些表达式提供了对宏观物理通道参数对CIR衰减速率和再摄取速率的影响的见解,并揭示了化学反应动力学和通道几何形状引起的突触信号传递的基本限制。与实验和仿真研究相比,我们的模型适用于现实的参数,可产生合理的结果,我们提供了基于粒子的计算机模拟的结果,以进一步验证分析模型。拟议的综合渠道模型承认了广泛的突触配置,使其适合研究许多实际相关问题,例如神经胶质细胞的吸收和溢出对三角式突触中信号传输的影响。
In Diffusive Molecular Communication (DMC), information is transmitted by diffusing molecules. Synaptic signaling, as a natural implementation of this paradigm, encompasses functional components that, once understood, can facilitate the development of synthetic DMC systems. To unleash this potential, however, a thorough understanding of the synaptic communication channel based on biophysical principles is needed. Since synaptic transmission critically depends also on non-neural cells, such understanding requires the consideration of the so-called tripartite synapse. In this paper, we develop a comprehensive channel model of the tripartite synapse encompassing a three-dimensional, finite-size spatial model of the synaptic cleft, molecule uptake at the presynaptic neuron and at glial cells, reversible binding to individual receptors at the postsynaptic neuron, and spillover to the extrasynaptic space. Based on this model, we derive analytical time domain expressions for the channel impulse response (CIR) of the synaptic DMC system and for the number of molecules taken up at the presynaptic neuron and at glial cells, respectively. These expressions provide insight into the impact of macroscopic physical channel parameters on the decay rate of the CIR and the reuptake rate, and reveal fundamental limits for synaptic signal transmission induced by chemical reaction kinetics and the channel geometry. Adapted to realistic parameters, our model produces plausible results when compared to experimental and simulation studies and we provide results from particle-based computer simulations to further validate the analytical model. The proposed comprehensive channel model admits a wide range of synaptic configurations making it suitable for the investigation of many practically relevant questions, such as the impact of glial cell uptake and spillover on signal transmission in the tripartite synapse.