论文标题

使用范围定位的多标签临床文本中的断言检测

Assertion Detection in Multi-Label Clinical Text using Scope Localization

论文作者

Ambati, Rajeev Bhatt, Hanifi, Ahmed Ada, Vunikili, Ramya, Sharma, Puneet, Farri, Oladimeji

论文摘要

临床领域中的多标签句子(文本)是由于对患者护理期间情景的丰富描述而产生的。主张检测的最先进的方法主要解决此任务,以每个句子的单个断言标签设置(文本)。此外,很少有基于规则和深度学习方法对单标签文本执行否定/断言范围检测。扩展这些方法来解决多标签句子而不降低性能,这是一个重大挑战。因此,我们开发了一个卷积神经网络(CNN)体系结构,以单阶段的端到端方式将多个标签及其范围定位,并证明我们的模型至少要比多标签临床文本上的先进的速度高12%。

Multi-label sentences (text) in the clinical domain result from the rich description of scenarios during patient care. The state-of-theart methods for assertion detection mostly address this task in the setting of a single assertion label per sentence (text). In addition, few rules based and deep learning methods perform negation/assertion scope detection on single-label text. It is a significant challenge extending these methods to address multi-label sentences without diminishing performance. Therefore, we developed a convolutional neural network (CNN) architecture to localize multiple labels and their scopes in a single stage end-to-end fashion, and demonstrate that our model performs atleast 12% better than the state-of-the-art on multi-label clinical text.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源