论文标题

在偏心序列方面,$ k $ steiner wiener和Wiener型索引

Bounding the $k$-Steiner Wiener and Wiener-type indices of trees in terms of eccentric sequence

论文作者

Dankelmann, Peter, Dossou-Olory, Audace A. V.

论文摘要

连接的图$ g $的怪异序列是其顶点偏心率的非保证序列。 $ g $的维也纳指数是所有无序的$ g $顶点之间的距离之和。最近的作者最近确定了所有具有给定偏心序列的树中Wiener指数的独特树。在本文中,我们表明,这些结果不仅适用于维纳指数,还适用于我们称Wiener-type指数的大量基于距离的拓扑指数。此类的特殊情况包括Haryer Index,Harary索引,$λ> 0 $和$λ<0 $的广义Wiener索引$Wλ$以及倒数互补的Wiener索引。我们的结果暗示并统一了这些维纳型型指数的已知界限,以定位和直径为特定的树木。 我们还提供了具有给定偏心序列的$ K $ -Steiner Wiener索引的类似结果。一组$ a \ subseteq v(g)$的坦格纳距离是$ g $的子树中的最少边缘数,其顶点套件包含$ a $,而$ k $ -Steiner wiener index是所有$ k $ - element子集$ v(g)$的距离的总和。作为推论,我们在$ k $ steiner Wiener的树木指数上获得了具有给定秩序和直径的树木指数的急剧下限,并确定在哪种情况下,极端树是唯一的,从而纠正了文献中的错误。

The eccentric sequence of a connected graph $G$ is the nondecreasing sequence of the eccentricities of its vertices. The Wiener index of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. The unique trees that minimise the Wiener index among all trees with a given eccentric sequence were recently determined by the present authors. In this paper we show that these results hold not only for the Wiener index, but for a large class of distance-based topological indices which we term Wiener-type indices. Particular cases of this class include the hyper-Wiener index, the Harary index, the generalised Wiener index $W^λ$ for $λ>0$ and $λ<0$, and the reciprocal complementary Wiener index. Our results imply and unify known bounds on these Wiener-type indices for trees of given order and diameter. We also present similar results for the $k$-Steiner Wiener index of trees with a given eccentric sequence. The Steiner distance of a set $A\subseteq V(G)$ is theminimum number of edges in a subtree of $G$ whose vertex set contains $A$, and the $k$-Steiner Wiener index is the sum of distances of all $k$-element subsets of $V(G)$. As a corollary, we obtain a sharp lower bound on the $k$-Steiner Wiener index of trees with given order and diameter, and determine in which cases the extremal tree is unique, thereby correcting an error in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源