论文标题
在偏心序列方面,$ k $ steiner wiener和Wiener型索引
Bounding the $k$-Steiner Wiener and Wiener-type indices of trees in terms of eccentric sequence
论文作者
论文摘要
连接的图$ g $的怪异序列是其顶点偏心率的非保证序列。 $ g $的维也纳指数是所有无序的$ g $顶点之间的距离之和。最近的作者最近确定了所有具有给定偏心序列的树中Wiener指数的独特树。在本文中,我们表明,这些结果不仅适用于维纳指数,还适用于我们称Wiener-type指数的大量基于距离的拓扑指数。此类的特殊情况包括Haryer Index,Harary索引,$λ> 0 $和$λ<0 $的广义Wiener索引$Wλ$以及倒数互补的Wiener索引。我们的结果暗示并统一了这些维纳型型指数的已知界限,以定位和直径为特定的树木。 我们还提供了具有给定偏心序列的$ K $ -Steiner Wiener索引的类似结果。一组$ a \ subseteq v(g)$的坦格纳距离是$ g $的子树中的最少边缘数,其顶点套件包含$ a $,而$ k $ -Steiner wiener index是所有$ k $ - element子集$ v(g)$的距离的总和。作为推论,我们在$ k $ steiner Wiener的树木指数上获得了具有给定秩序和直径的树木指数的急剧下限,并确定在哪种情况下,极端树是唯一的,从而纠正了文献中的错误。
The eccentric sequence of a connected graph $G$ is the nondecreasing sequence of the eccentricities of its vertices. The Wiener index of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. The unique trees that minimise the Wiener index among all trees with a given eccentric sequence were recently determined by the present authors. In this paper we show that these results hold not only for the Wiener index, but for a large class of distance-based topological indices which we term Wiener-type indices. Particular cases of this class include the hyper-Wiener index, the Harary index, the generalised Wiener index $W^λ$ for $λ>0$ and $λ<0$, and the reciprocal complementary Wiener index. Our results imply and unify known bounds on these Wiener-type indices for trees of given order and diameter. We also present similar results for the $k$-Steiner Wiener index of trees with a given eccentric sequence. The Steiner distance of a set $A\subseteq V(G)$ is theminimum number of edges in a subtree of $G$ whose vertex set contains $A$, and the $k$-Steiner Wiener index is the sum of distances of all $k$-element subsets of $V(G)$. As a corollary, we obtain a sharp lower bound on the $k$-Steiner Wiener index of trees with given order and diameter, and determine in which cases the extremal tree is unique, thereby correcting an error in the literature.