论文标题
SU(1,1),SU(2)等新的BCH状关系(2,1)躺在代数
New BCH-like relations of the su(1, 1), su(2) and so(2, 1) Lie algebras
论文作者
论文摘要
在这项工作中,我们展示了涉及SU(1,1),SU(2)等发电机的新的类似BCH的关系。我们使用我们的结果以直接的方式获得相应谎言组的任意数量元素的组成。为了对我们的结果进行自洽检查,作为第一个应用程序,我们恢复了两个任意挤压操作员的非平凡组成法。作为第二个应用程序,我们展示了如何使用我们的结果来计算由时间依赖性的汉密尔顿人所描述的物理系统的时间演化操作员,由上述lie代数的线性组合给出。
In this work we demonstrate new BCH-like relations involving the generators of the su(1, 1), su(2) and so(2, 1) Lie algebras. We use our results to obtain in a straightforward way the composition of an arbitrary number of elements of the corresponding Lie groups. In order to make a self-consistent check of our results, as a first application we recover the non-trivial composition law of two arbitrary squeezing operators. As a second application, we show how our results can be used to compute the time evolution operator of physical systems described by time-dependent hamiltonians given by linear combinations of the generators of the aforementioned Lie algebras.