论文标题

在爱因斯坦的条件下

On the Einstein condition for Lorentzian 3-manifolds

论文作者

Aazami, Amir Babak

论文摘要

众所周知,在洛伦兹几何形状中,没有紧凑的球形空间形式。在维度3中,这意味着没有封闭的爱因斯坦3型脉络膜具有阳性爱因斯坦常数。我们在这里概括了这一事实,证明也没有封闭的Lorentzian 3-manifolds $(m,g)$,其ricci张力满足$$ \ text {ric} = fg+(f-λ)t^{\ flat} \ flat} \ otimes t^{那永远不会占用$ 0,λ$。 (观察到,当$ f =λ$时,这将减少到阳性爱因斯坦案例。)我们表明,如果$λ$为负,则没有这种阻塞。最后,还检查了“边界”情况$λ= 0 $:我们表明,如果$λ= 0 $和$ f> 0 $,则$(m,g)$必须等于$(\ m athbb {s}^1 \!\!\!\!\!\!\!

It is well known that in Lorentzian geometry there are no compact spherical space forms; in dimension 3, this means there are no closed Einstein 3-manifolds with positive Einstein constant. We generalize this fact here, by proving that there are also no closed Lorentzian 3-manifolds $(M,g)$ whose Ricci tensor satisfies $$ \text{Ric} = fg+(f-λ)T^{\flat}\otimes T^{\flat}, $$ for any unit timelike vector field $T$, any positive constant $λ$, and any smooth function $f$ that never takes the values $0,λ$. (Observe that this reduces to the positive Einstein case when $f = λ$.) We show that there is no such obstruction if $λ$ is negative. Finally, the "borderline" case $λ= 0$ is also examined: we show that if $λ= 0$ and $f > 0$, then $(M,g)$ must be isometric to $(\mathbb{S}^1\!\times \!N,-dt^2\oplus h)$ with $(N,h)$ a Riemannian manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源