论文标题
不可还原的量子标志歧管上的全态相对HOPF模块
Holomorphic Relative Hopf Modules over the Irreducible Quantum Flag Manifolds
论文作者
论文摘要
我们为所有有限生成的相对HOPF模块构建了协变量的全体形状结构,该结构与他们的heckenberger-kolb Calculi构成了不可约定的量子标志歧管。在经典的限制中,这些限制减少了全体形态均质矢量束的模块,而不是可减少的标志歧管上。对于简单的相对HOPF模块的情况,我们表明这种协变量的塑性结构是独一无二的。这是Majid,Khalkhali,Landi和van Suijlekom的早期工作,用于Podleśsphere的线模块,以及随后的Khalkhali和Moatadelro的工作,用于一般的量子投射空间。
We construct covariant $q$-deformed holomorphic structures for all finitely-generated relative Hopf modules over the irreducible quantum flag manifolds endowed with their Heckenberger--Kolb calculi. In the classical limit these reduce to modules of sections of holomorphic homogeneous vector bundles over irreducible flag manifolds. For the case of simple relative Hopf modules, we show that this covariant holomorphic structure is unique. This generalises earlier work of Majid, Khalkhali, Landi, and van Suijlekom for line modules of the Podleś sphere, and subsequent work of Khalkhali and Moatadelro for general quantum projective space.