论文标题
具有4D时空数据表示的深度学习,用于基于OCT的力估计
Deep learning with 4D spatio-temporal data representations for OCT-based force estimation
论文作者
论文摘要
对于机器人辅助的微创手术而言,估计仪器和组织之间作用的力是一个具有挑战性的问题。最近,已经提出了许多基于视觉的方法来替代电力力学方法。此外,光学相干断层扫描(OCT)和深度学习已被用于根据体积图像数据中观察到的变形来估计力。该方法证明了使用3D体积数据超过2D深度图像的深度学习的优势进行力估计。在这项工作中,我们将基于深度学习的力估计的问题扩展到4D时空数据,并具有3D OCT量的流。为此,我们设计并评估了几种将时空深度学习扩展到4D的方法,到目前为止,这在很大程度上尚未探索。此外,我们提供了多维图像数据表示的深入分析,以进行力估计,并将我们的4D方法与以前的较低维度方法进行比较。此外,我们分析了时间信息的效果,并研究了短期未来力量值的预测,这可以促进安全特征。对于我们的4D力估计架构,我们发现空间和时间处理的有效脱钩是有利的。我们表明,使用4D时空数据的表现优于所有先前使用的数据表示,平均绝对误差为10.70万。我们发现时间信息对于力估计很有价值,我们证明了力预测的可行性。
Estimating the forces acting between instruments and tissue is a challenging problem for robot-assisted minimally-invasive surgery. Recently, numerous vision-based methods have been proposed to replace electro-mechanical approaches. Moreover, optical coherence tomography (OCT) and deep learning have been used for estimating forces based on deformation observed in volumetric image data. The method demonstrated the advantage of deep learning with 3D volumetric data over 2D depth images for force estimation. In this work, we extend the problem of deep learning-based force estimation to 4D spatio-temporal data with streams of 3D OCT volumes. For this purpose, we design and evaluate several methods extending spatio-temporal deep learning to 4D which is largely unexplored so far. Furthermore, we provide an in-depth analysis of multi-dimensional image data representations for force estimation, comparing our 4D approach to previous, lower-dimensional methods. Also, we analyze the effect of temporal information and we study the prediction of short-term future force values, which could facilitate safety features. For our 4D force estimation architectures, we find that efficient decoupling of spatial and temporal processing is advantageous. We show that using 4D spatio-temporal data outperforms all previously used data representations with a mean absolute error of 10.7mN. We find that temporal information is valuable for force estimation and we demonstrate the feasibility of force prediction.