论文标题

发现:准确有效地发现声明过程模型

DisCoveR: Accurate & Efficient Discovery of Declarative Process Models

论文作者

Back, Christoffer Olling, Slaats, Tijs, Hildebrandt, Thomas Troels, Marquard, Morten

论文摘要

声明的过程建模形式主义(捕获高级过程约束)已经看到了越来越多的兴趣,尤其是在建模灵活过程中。本文介绍了发现,这是一个非常有效且准确的声明性矿工,用于学习动态条件响应(DCR)图表。我们精确地将算法形式化,描述了高效的位矢量实现,并严格评估了另外两个声明性矿工的绩效,代表了声明和DCR图挖掘中的最先进。发现胜过这些W.R.T.二进制分类任务,在2019年过程发现比赛中达到96.2%的平均准确性。由于其线性时间的复杂性,Discover还达到了跑步时间的1-2个数量级以下。最后,我们展示了如何将矿工集成到最先进的声明过程建模框架中,作为模型建议工具,讨论发现如何扮演建模任务的组成部分,并报告集成如何改善最终用户的建模经验。

Declarative process modeling formalisms - which capture high-level process constraints - have seen growing interest, especially for modeling flexible processes. This paper presents DisCoveR, an extremely efficient and accurate declarative miner for learning Dynamic Condition Response (DCR) Graphs from event logs. We precisely formalize the algorithm, describe a highly efficient bit vector implementation and rigorously evaluate performance against two other declarative miners, representing the state-of-the-art in Declare and DCR Graphs mining. DisCoveR outperforms each of these w.r.t. a binary classification task, achieving an average accuracy of 96.2% in the Process Discovery Contest 2019. Due to its linear time complexity, DisCoveR also achieves run-times 1-2 orders of magnitude below its declarative counterparts. Finally, we show how the miner has been integrated in a state-of-the-art declarative process modeling framework as a model recommendation tool, discuss how discovery can play an integral part of the modeling task and report on how the integration has improved the modeling experience of end-users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源