论文标题
f(r)重力的薄壳,具有非恒定标量曲率
Thin shells in F(R) gravity with non-constant scalar curvature
论文作者
论文摘要
我们引入了两类的球形对称空间,具有薄的物质外壳,在非二次的F(R)重力理论中,具有非恒定标量表曲率R。在第一个中,薄壳与外部区域相连,而第二个则与蠕虫的喉咙相对应。在这两种情况下,我们都分析了径向扰动下静态配置的稳定性。作为具有宇宙常数的空间中的特殊示例,我们在非电荷黑洞和带电的薄壳虫洞周围提出了带电的薄壳。我们表明,在这两种情况下,对于参数的合适值都是可能的。
We introduce two classes of spherically symmetric spacetimes having a thin shell of matter, in non-quadratic F(R) theories of gravity with non-constant scalar curvature R. In the first, the thin shell joins an inner region with an outer one, while in the second it corresponds to the throat of a wormhole. In both scenarios, we analyze the stability of the static configurations under radial perturbations. As particular examples in spacetimes with a cosmological constant, we present charged thin shells surrounding a non-charged black hole and charged thin-shell wormholes. We show that in both cases stable solutions are possible for suitable values of the parameters.