论文标题

语义对齐样式转移的歧管对齐

Manifold Alignment for Semantically Aligned Style Transfer

论文作者

Huo, Jing, Jin, Shiyin, Li, Wenbin, Wu, Jing, Lai, Yu-Kun, Shi, Yinghuan, Gao, Yang

论文摘要

大多数现有样式转移方法遵循以下假设:样式可以用全球统计信息(例如革兰氏阴矩阵或协方差矩阵)表示,从而通过强迫输出和样式图像具有相似的全球统计信息来解决问题。另一种选择是局部样式模式的假设,其中算法旨在交换内容和样式图像的类似本地特征。但是,这些现有方法的限制在于,它们忽略了内容图像的语义结构,这可能导致输出中的内容结构损坏。在本文中,我们做出了一个新的假设,即来自同一语义区域的图像特征形成了一个歧管,并且具有多个语义区域的图像遵循了多个manifold分布。基于此假设,将样式转移问题提出为对齐两个多势分布,并提出了一个基于多种对齐方式的样式转移(MAST)框架。所提出的框架允许在输出和样式图像之间具有类似的语义区域共享相似的样式模式。此外,提出的歧管对准方法具有灵活性,可以允许用户编辑或使用语义分割图作为样式转移的指导。为了允许该方法适用于感性的样式转移,我们提出了一个新的自适应重量跳过连接网络结构,以保留内容详细信息。广泛的实验验证了拟议框架对艺术和逼真风格转移的有效性。代码可在https://github.com/njuhuojing/mast上找到。

Most existing style transfer methods follow the assumption that styles can be represented with global statistics (e.g., Gram matrices or covariance matrices), and thus address the problem by forcing the output and style images to have similar global statistics. An alternative is the assumption of local style patterns, where algorithms are designed to swap similar local features of content and style images. However, the limitation of these existing methods is that they neglect the semantic structure of the content image which may lead to corrupted content structure in the output. In this paper, we make a new assumption that image features from the same semantic region form a manifold and an image with multiple semantic regions follows a multi-manifold distribution. Based on this assumption, the style transfer problem is formulated as aligning two multi-manifold distributions and a Manifold Alignment based Style Transfer (MAST) framework is proposed. The proposed framework allows semantically similar regions between the output and the style image share similar style patterns. Moreover, the proposed manifold alignment method is flexible to allow user editing or using semantic segmentation maps as guidance for style transfer. To allow the method to be applicable to photorealistic style transfer, we propose a new adaptive weight skip connection network structure to preserve the content details. Extensive experiments verify the effectiveness of the proposed framework for both artistic and photorealistic style transfer. Code is available at https://github.com/NJUHuoJing/MAST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源