论文标题

关于频率超管的数量$ f^n(4; 2,2)$

On the number of frequency hypercubes $F^n(4;2,2)$

论文作者

Shi, Minjia, Wang, Shukai, Li, Xiaoxiao, Krotov, Denis S.

论文摘要

频率$ n $ -cube $ f^n(4; 2,2)$是$ n $ dimensional $ 4 $ -by -...- by-4 $ 4 $ 4 $ 4 $阵列,填充$ 0 $ s和$ 1 $ s,使每条线完全包含两个$ 1 $ s。我们对频率$ 4 $ -ICUBES $ f^4(4; 2,2)$进行分类,找到$ f^3(4; 2,2)$的尺寸$ 25 $的测试集,并在$ f^n(4; 2,2)$的上方限制了上限。此外,对于任何大于$ 2 $的$ n $,我们构建了无法将其构建的$ f^n(4; 2,2)$,而无法将其完善到拉丁语HyperCube,而其每个子$ f^{n-1}(4; 2,2)$ can can。 关键字:频率超越立方体,频率平方,拉丁超立方体,测试集,MDS代码

A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4$-by-...-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$, and derive an upper bound on the number of $F^n(4;2,2)$. Additionally, for any $n$ greater than $2$, we construct an $F^n(4;2,2)$ that cannot be refined to a latin hypercube, while each of its sub-$F^{n-1}(4;2,2)$ can. Keywords: frequency hypercube, frequency square, latin hypercube, testing set, MDS code

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源