论文标题

可重新配置的智能表面增强的认知无线网络

Reconfigurable Intelligent Surface Enhanced Cognitive Radio Networks

论文作者

He, Jinglian, Yu, Kaiqiang, Zhou, Yong, Shi, Yuanming

论文摘要

认知无线电(CR)网络是一个有前途的网络体系结构,符合增强稀缺无线电频谱利用率的要求。同时,可重新配置的智能表面(RIS)是通过通过调谐大量被动反射单元来正确更改信号传播的有前途的解决方案,以提高无线网络的能量和频谱效率。在本文中,我们通过共同优化二级用户(SU)发射器和RIS的相位移位矩阵,与单电球主电台(PR)网络共存的RIS增强单细胞认知无线电(CR)网络的下行链路传输最小化问题。由于耦合的优化变量和单位模量约束,研究的问题是一个高度棘手的问题,为此提供了替代最小化框架。此外,开发了一种新型的范围差异(DC)算法,以通过将其提升为低级别矩阵优化问题来解决所得的非凸二次程序。然后,我们通过利用痕量标准和光谱规范之间的差异来表示非凸线级别的约束作为DC函数。模拟结果验证了我们提出的算法优于现有的最新方法。

The cognitive radio (CR) network is a promising network architecture that meets the requirement of enhancing scarce radio spectrum utilization. Meanwhile, reconfigurable intelligent surfaces (RIS) is a promising solution to enhance the energy and spectrum efficiency of wireless networks by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we investigate the downlink transmit power minimization problem for the RIS-enhanced single-cell cognitive radio (CR) network coexisting with a single-cell primary radio (PR) network by jointly optimizing the transmit beamformers at the secondary user (SU) transmitter and the phase shift matrix at the RIS. The investigated problem is a highly intractable due to the coupled optimization variables and unit modulus constraint, for which an alternative minimization framework is presented. Furthermore, a novel difference-of-convex (DC) algorithm is developed to solve the resulting non-convex quadratic program by lifting it into a low-rank matrix optimization problem. We then represent non-convex rank-one constraint as a DC function by exploiting the difference between trace norm and spectral norm. The simulation results validate that our proposed algorithm outperforms the existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源