论文标题
身份验证体内物联网设备:一种对抗性学习方法
Authenticating On-Body IoT Devices: An Adversarial Learning Approach
论文作者
论文摘要
通过将用户添加为连通性的新维度,近年来,体内互联网(IoT)设备已获得了相当大的势头,同时增加了严重的隐私和安全问题。对这些设备进行身份验证的现有方法将自己限制为专用传感器或指定的用户动作,从而破坏了它们的广泛接受。本文通过将无线物理层(PHY)签名与上层协议集成在一起,通过一般身份验证解决方案克服了这些局限性。关键的启示技术是从接收到的信号中构建代表性的无线电传播配置文件,并开发对抗性的多人神经网络,以准确识别基本的无线电传播模式并促进体内设备的身份验证。一旦听到可疑的传输,我们的系统就会触发基于PHY的挑战响应协议,以防止主动攻击。我们证明,在平衡时,我们的对抗模型可以提取有关传播模式的所有信息,并消除由运动方差和环境变化引起的任何无关信息。我们使用通用软件无线电外围设备(USRP)设备构建系统的原型,并在典型的室内和室外环境中使用各种静态和动态的身体运动进行广泛的实验。实验结果表明,我们的系统达到91.6%的平均身份验证精度,在接收器操作特征曲线(AUROC)下,高面积为0.96,与常规的非对抗方法相比,其概括性能更好。
By adding users as a new dimension to connectivity, on-body Internet-of-Things (IoT) devices have gained considerable momentum in recent years, while raising serious privacy and safety issues. Existing approaches to authenticate these devices limit themselves to dedicated sensors or specified user motions, undermining their widespread acceptance. This paper overcomes these limitations with a general authentication solution by integrating wireless physical layer (PHY) signatures with upper-layer protocols. The key enabling techniques are constructing representative radio propagation profiles from received signals, and developing an adversarial multi-player neural network to accurately recognize underlying radio propagation patterns and facilitate on-body device authentication. Once hearing a suspicious transmission, our system triggers a PHY-based challenge-response protocol to defend in depth against active attacks. We prove that at equilibrium, our adversarial model can extract all information about propagation patterns and eliminate any irrelevant information caused by motion variances and environment changes. We build a prototype of our system using Universal Software Radio Peripheral (USRP) devices and conduct extensive experiments with various static and dynamic body motions in typical indoor and outdoor environments. The experimental results show that our system achieves an average authentication accuracy of 91.6%, with a high area under the receiver operating characteristic curve (AUROC) of 0.96 and a better generalization performance compared with the conventional non-adversarial approach.