论文标题

开放回归对话问题回答

Open-Retrieval Conversational Question Answering

论文作者

Qu, Chen, Yang, Liu, Chen, Cen, Qiu, Minghui, Croft, W. Bruce, Iyyer, Mohit

论文摘要

会话搜索是信息检索的最终目标之一。最近的研究方法通过简化的响应排名和对话问题回答的简化设置进行了对话搜索,其中答案要么从给定的候选人集中选择,要么从给定的段落中提取。这些简化忽略了检索在会话搜索中的基本作用。为了解决此限制,我们介绍了一个开放式回答对话问题答案(ORCONVQA)设置,在此设置中,我们在提取答案之前学会从大型收藏中检索证据,这是朝着构建功能对话搜索系统的进一步步骤。我们创建一个数据集,OR-QUAC,以促进ORCONVQA的研究。我们为ORCONVQA构建了一个端到端系统,其中包含猎犬,重读者和读者,这些系统都是基于变形金刚的。我们对OR-QUAC的广泛实验表明,可学习的检索器对于ORCONVQA至关重要。我们进一步表明,当我们在所有系统组件中启用历史记录建模时,我们的系统可以做出重大改进。此外,我们表明,Reranker组件通过提供正则化效果来促进模型性能。最后,进行了进一步的深入分析,以提供对ORCONVQA的新见解。

Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源