论文标题

寻找比蛮力更快的满足分配:对布尔限制满意度的细粒度的观点

Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-grained Perspective into Boolean Constraint Satisfaction

论文作者

Künnemann, Marvin, Marx, Dániel

论文摘要

为了研究哪些情况下的问题可以比详尽的搜索(以及多少)更快地找到小解决方案,我们研究了布尔限制满意度与尺寸约束恰好$ k $的细粒度复杂性。更确切地说,我们旨在确定任何有限约束家庭,即最佳运行时间$ f(k)n^{g(k)} $,以找到令人满意的任务,以将$ n $变量的$ k $设置为$ 1 $。 在中心硬度假设上,关于图形和3均匀的超图中检测集团的假设,我们将$ g(k)$几乎紧密地描述为四个制度:(1)蛮力本质上是最好的,即$ g(k)=(k)=(1 \ pm o(1 \ pm o(1))k $,(1)k $,(2)当前的$ k $ - $ g(k)=(ω/3 \ pm o(1))k $,(3)指数对$ k $具有$ k $,in [ω(\ sqrt [3] {k}),o(\ sqrt {k})\ in $ g(k)\ in [ω(\ sqrt [3] {k}),问题(\ sqrt {k})$,或(4)问题是固定的,或$ g parce o($ g), 这比以前的FPT/W [1] - hADNESS二分法具有更细粒度的视角(Marx,计算复杂性2005)。我们最有趣的技术贡献是a $ f(k)n^{4 \ sqrt {k}} $ - 时间算法的子量算法,具有由目标$ k $的优先限制来参数(尤其是该方法),该方法是基于限制frobenius coin问题的限制,从而具有独立的利益。

To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly $k$. More precisely, we aim to determine, for any finite constraint family, the optimal running time $f(k)n^{g(k)}$ required to find satisfying assignments that set precisely $k$ of the $n$ variables to $1$. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of $g(k)$ into four regimes: (1) Brute force is essentially best-possible, i.e., $g(k) = (1\pm o(1))k$, (2) the best algorithms are as fast as current $k$-clique algorithms, i.e., $g(k)=(ω/3\pm o(1))k$, (3) the exponent has sublinear dependence on $k$ with $g(k) \in [Ω(\sqrt[3]{k}), O(\sqrt{k})]$, or (4) the problem is fixed-parameter tractable, i.e., $g(k) = O(1)$. This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a $f(k)n^{4\sqrt{k}}$-time algorithm for SubsetSum with precedence constraints parameterized by the target $k$ -- particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源